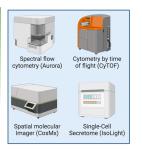
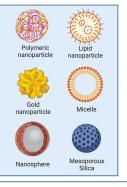
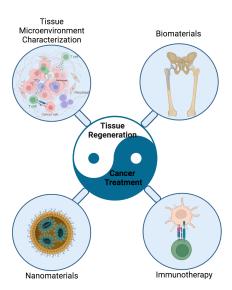
# Immunoengineering of the Tissue Microenvironment for Advancing Translational Medicine

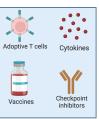
# **Tumor Microenvironment Reprogramming:**


 Activating adaptive T cell immunity and repolarizing immunosuppressive macrophage leveraging nano/biomaterials to enhance therapeutic benefits of chemo-radio-immunotherapy.


#### **Personalized Cancer Nanovaccines:**


 Co-delivering neoantigen peptides and TLR agonists, in combination with anti-PD-1 and anti-CTLA-4 checkpoint inhibitors to augment antitumor activity of T cells.

# **Immunoengineering for Musculoskeletal Tissue Repair:**


 Developing biodegradable scaffolds that synergistically enhance bone repair by integrating optimized osteoinductivity, osteoconductivity, and mechanical strength with immunomodulatory strategies—specifically, by inducing Treg activity to promote bone regeneration.











#### **Contact Information:**

#### Mostafa Yazdi

Assistant Professor Linda and Bipin Doshi Department of Chemical and Biochemical Engineering

Email: myazdi@mst.edu

Web: Linkedin in



## **Keywords:**

 Biomaterials, Immunoengineering, Cancer Immunotherapy, Tissue Regeneration, Osteoimmunology, Drug and Gene Delivery, Nanomedicine.

### **Publications and Recognitions:**

- Link to my Publications
- NIH T32 Fellowship, Basic Immune Mechanisms
- NIH T32 Fellowship, Carolina Center for Nanotechnology
- Guest Editor, Frontiers in Oncology



The Center for Biomedical Research